Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37960480

RESUMEN

In recent years, infrared thermographic (IRT) technology has experienced notable advancements and found widespread applications in various fields, such as renewable industry, electronic industry, construction, aviation, and healthcare. IRT technology is used for defect detection due to its non-contact, efficient, and high-resolution methods, which enhance product quality and reliability. This review offers an overview of active IRT principles. It comprehensively examines four categories based on the type of heat sources employed: pulsed thermography (PT), lock-in thermography (LT), ultrasonically stimulated vibration thermography (UVT), and eddy current thermography (ECT). Furthermore, the review explores the application of IRT imaging in the renewable energy sector, with a specific focus on the photovoltaic (PV) industry. The integration of IRT imaging and deep learning techniques presents an efficient and highly accurate solution for detecting defects in PV panels, playing a critical role in monitoring and maintaining PV energy systems. In addition, the application of infrared thermal imaging technology in electronic industry is reviewed. In the development and manufacturing of electronic products, IRT imaging is used to assess the performance and thermal characteristics of circuit boards. It aids in detecting potential material and manufacturing defects, ensuring product quality. Furthermore, the research discusses algorithmic detection for PV panels, the excitation sources used in electronic industry inspections, and infrared wavelengths. Finally, the review analyzes the advantages and challenges of IRT imaging concerning excitation sources, the PV industry, the electronics industry, and artificial intelligence (AI). It provides insights into critical issues requiring attention in future research endeavors.

2.
Front Immunol ; 14: 1198551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398674

RESUMEN

The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Redes Reguladoras de Genes , Agotamiento de Células T , Linfocitos T , Regulación de la Expresión Génica , Neoplasias/genética , Neoplasias/terapia
3.
Mitochondrion ; 71: 64-75, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276954

RESUMEN

As the cell's energy factory and metabolic hub, mitochondria are critical for ATP synthesis to maintain cellular function. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission to alter their size, shape, and position, with mitochondrial fusion and fission being interdependent to maintain the balance of mitochondrial morphological changes. However, in response to metabolic and functional damage, mitochondria can grow in size, resulting in a form of abnormal mitochondrial morphology known as megamitochondria. Megamitochondria are characterized by their considerably larger size, pale matrix, and marginal cristae structure and have been observed in various human diseases. In energy-intensive cells like hepatocytes or cardiomyocytes, the pathological process can lead to the growth of megamitochondria, which can further cause metabolic disorders, cell damage and aggravates the progression of the disease. Nonetheless, megamitochondria can also form in response to short-term environmental stimulation as a compensatory mechanism to support cell survival. However, extended stimulation can reverse the benefits of megamitochondria leading to adverse effects. In this review, we will focus on the findings of the different roles of megamitochondria, and their link to disease development to identify promising clinical therapeutic targets.


Asunto(s)
Enfermedades Metabólicas , Mitocondrias , Humanos , Dilatación Mitocondrial , Mitocondrias/metabolismo , Hepatocitos/metabolismo , Membranas Mitocondriales/metabolismo , Dinámicas Mitocondriales
4.
BMC Cancer ; 22(1): 1229, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36443709

RESUMEN

BACKGROUND: Dysregulation of inhibitor of differentiation/DNA binding (ID) genes is linked to cancer growth, angiogenesis, invasiveness, metastasis and patient survival. Nevertheless, few investigations have systematically determined the expression and prognostic value of ID genes in acute myeloid leukemia (AML). METHODS: The expression and clinical prognostic value of ID genes in AML were first identified by public databases and further validated by our research cohort. RESULTS: Using public data, the expression of ID1/ID3 was markedly downregulated in AML, and the expression of ID2 was greatly upregulated in AML, whereas ID4 showed no significant difference. Among the ID genes, only ID3 expression may be the most valuable prognostic biomarker in both total AML and cytogenetically normal AML (CN-AML) and especially in CN-AML. Clinically, reduced ID3 expression was greatly associated with higher white blood cell counts, peripheral blood/bone marrow blasts, normal karyotypes and intermediate cytogenetic risk. In addition, low ID3 expression was markedly related to FLT3 and NPM1 mutations as well as wild-type TP53. Despite these associations, multivariate Cox regression analysis revealed that ID3 expression was an independent risk factor affecting overall survival (OS) and disease free survival (DFS) in CN-AML patients. Biologically, a total of 839 mRNAs/lncRNAs and 72 microRNAs were found to be associated with ID3 expression in AML. Importantly, the expression of ID3 with discriminative value in AML was further confirmed in our research cohort. CONCLUSION: The bioinformatics analysis and experimental verification demonstrate that low ID3 expression independently affects OS and DFS in patients with CN-AML, which might be seen as a potential prognostic indicator in CN-AML.


Asunto(s)
Biología Computacional , Leucemia Mieloide Aguda , Humanos , Pronóstico , Leucemia Mieloide Aguda/genética , Supervivencia sin Enfermedad , Supervivencia sin Progresión , Proteínas de Neoplasias , Proteínas Inhibidoras de la Diferenciación/genética
5.
Dis Markers ; 2022: 8928282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438902

RESUMEN

Long noncoding RNAs (lncRNAs) are revealed to be involved in the tumorigenesis and progression of human malignancies mediated by microRNA (miRNA) via the competing endogenous RNA (ceRNA) mechanism, a newly proposed "RNA language." However, the lncRNA-associated competing triplet (lncACT) network among ceRNA transcripts in clear cell renal cell carcinoma (ccRCC) is currently lacking. We carried out differential expression analysis to identify aberrantly expressed lncRNAs, miRNAs, and mRNAs by analyzing the RNA-seq data of 420 ccRCC tissues and 71 noncancerous kidney tissues obtained from The Cancer Genome Atlas (TCGA). Then, a ccRCC-specific ceRNA network was built using computational algorithms, including miRcode, TargetScan, miRanda, and miRTarBase. In total, 1491 dysregulated lncRNAs were found between normal renal tissues and ccRCC (fold change > 4 and false discovery rate < 0.01). A ceRNA network that comprised of 46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs was established by integrating the lncRNA/miRNA and miRNA/mRNA interactions into lncACTs. Several lncRNAs were identified to be significantly associated with clinical features of ccRCC patients. Notably, four key lncRNAs (TCL6, HOTTIP, HULC, and PCGEM1) were tightly correlated with both patients' clinical characteristics and overall survival (log-rank P < 0.05), indicating their potential important roles in ccRCC. HOTTIP may be a potential prognostic and therapeutic molecular marker for ccRCC patients. Collectively, our results provide a comprehensive view of the lncRNA-associated ceRNA regulatory network for a better understanding of the mechanisms and prognosis biomarkers for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética
6.
Cancers (Basel) ; 14(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36139566

RESUMEN

Mutations of spliceosome genes have been frequently identified in myeloid malignancies with the large-scale application of advanced sequencing technology. U2 small nuclear RNA auxiliary factor 1 (U2AF1), an essential component of U2AF heterodimer, plays a pivotal role in the pre-mRNA splicing processes to generate functional mRNAs. Over the past few decades, the mutation landscape of U2AF1 (most frequently involved S34 and Q157 hotspots) has been drawn in multiple cancers, particularly in myeloid malignancies. As a recognized early driver of myelodysplastic syndromes (MDSs), U2AF1 mutates most frequently in MDS, followed by acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). Here, for the first time, we summarize the research progress of U2AF1 mutations in myeloid malignancies, including the correlations between U2AF1 mutations with clinical and genetic characteristics, prognosis, and the leukemic transformation of patients. We also summarize the adverse effects of U2AF1 mutations on hematopoietic function, and the alterations in downstream alternative gene splicing and biological pathways, thus providing comprehensive insights into the roles of U2AF1 mutations in the myeloid malignancy pathogenesis. U2AF1 mutations are expected to be potential novel molecular markers for myeloid malignancies, especially for risk stratification, prognosis assessment, and a therapeutic target of MDS patients.

7.
Cell Mol Biol Lett ; 27(1): 59, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883028

RESUMEN

BACKGROUND: Previously, we reported the expression of DLX4 isoforms (BP1 and DLX7) in myeloid leukemia, but the functional role of DLX4 isoforms remains poorly understood. In the work described herein, we further determined the underlying role of DLX4 isoforms in chronic myeloid leukemia (CML) leukemogenesis. METHODS: The expression and methylation of DLX4 isoforms were detected by real-time quantitative PCR (RT-qPCR) and real-time quantitative methylation-specific PCR (RT-qMSP) in patients with CML. The functional role of DLX4 isoforms was determined in vitro and in vivo. The molecular mechanism of DLX4 isoforms in leukemogenesis was identified based on chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq)/assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) and RNA sequencing (RNA-Seq). RESULTS: BP1 expression was increased in patients with CML with unmethylated promoter, but DLX7 expression was decreased with hypermethylated promoter. Functionally, overexpression of BP1 increased the proliferation rate of K562 cells with S/G2 promotion, whereas DLX7 overexpression reduced the proliferation rate of K562 cells with G1 arrest. Moreover, K562 cells with BP1 overexpression increased the tumorigenicity in NCG mice, whereas K562 cells with DLX7 overexpression decreased the tumorigenicity. Mechanistically, a total of 91 genes including 79 messenger RNAs (mRNAs) and 12 long noncoding RNAs (lncRNAs) were discovered by ChIP-Seq and RNA-Seq as direct downstream targets of BP1. Among the downstream genes, knockdown of RREB1 and SGMS1-AS1 partially revived the proliferation caused by BP1 overexpression in K562 cells. Similarly, using ATAC-Seq and RNA-Seq, a total of 282 genes including 151 mRNA and 131 lncRNAs were identified as direct downstream targets of DLX7. Knockdown of downstream genes PTPRB and NEAT1 partially revived the proliferation caused by DLX7 overexpression in K562 cells. Finally, we also identified and validated a SGMS1-AS1/miR-181d-5p/SRPK2 competing endogenous RNA (ceRNA) network caused by BP1 overexpression in K562 cells. CONCLUSIONS: The current findings reveal that DNA methylation-mediated differential expression of DLX4 isoforms BP1 and DLX7 plays opposite functions in leukemogenesis. BP1 plays an oncogenic role in leukemia development, whereas DLX7 acts as a tumor suppressor gene. These results suggest DLX4 as a therapeutic target for antileukemia therapy.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , ARN Largo no Codificante , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , MicroARNs/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/uso terapéutico , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción
8.
Immun Inflamm Dis ; 10(7): e644, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35759243

RESUMEN

Chromodomain helicase DNA binding protein 4 (CHD4) is an ATPase subunit of the nucleosome remodeling and deacetylation complex. It has been implicated in gene transcription, DNA damage repair, maintenance of genome stability, and chromatin assembly. Meanwhile, it is highly related to cell cycle progression and the proceeding of malignancy. Most of the previous studies were focused on the function of CHD4 with tumor cells, cancer stem cells, and cancer cells multidrug resistance. Recently, some researchers have explored the CHD4 functions on the development and differentiation of adaptive immune cells, such as T and B lymphocytes. In this review, we will discuss details of CHD4 in lymphocyte differentiation and development, as well as the critical role of CHD4 in the pathogenesis of the autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Ensamble y Desensamble de Cromatina , Linfocitos B/metabolismo , Diferenciación Celular , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Nucleosomas , Linfocitos T
9.
Cancers (Basel) ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35626163

RESUMEN

As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.

10.
Adv Sci (Weinh) ; 9(1): e2101553, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747157

RESUMEN

Metabolic disorder is one of the hallmarks of cancers, and reprogramming of metabolism is becoming a novel strategy for cancer treatment. Citrate is a key metabolite and critical metabolic regulator linking glycolysis and lipid metabolism in cellular energy homeostasis. Here it is reported that citrate treatment (both sodium citrate and citric acid) significantly suppresses tumor cell proliferation and growth in various tumor types. Mechanistically, citrate promotes excessive lipid biosynthesis and induces disruption of lipid metabolism in tumor cells, resulting in tumor cell senescence and growth inhibition. Furthermore, ATM-associated DNA damage response cooperates with MAPK and mTOR signaling pathways to control citrate-induced tumor cell growth arrest and senescence. In vivo studies further demonstrate that citrate administration dramatically inhibits tumor growth and progression in a colon cancer xenograft model. Importantly, citrate administration combined with the conventional chemotherapy drugs exhibits synergistic antitumor effects in vivo in the colon cancer models. These results clearly indicate that citrate can reprogram lipid metabolism and cell fate in cancer cells, and targeting citrate can be a promising therapeutic strategy for tumor treatment.


Asunto(s)
Senescencia Celular , Ácido Cítrico/metabolismo , Ácido Cítrico/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/biosíntesis , Animales , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
11.
Cancers (Basel) ; 13(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34885209

RESUMEN

LncRNAs are involved in the occurrence and progressions of multiple cancers. Emerging evidence has shown that PCAT6, a newly discovered carcinogenic lncRNA, is abnormally elevated in various human malignant tumors. Until now, PCAT6 has been found to sponge various miRNAs to activate the signaling pathways, which further affects tumor cell proliferation, migration, invasion, cycle, apoptosis, radioresistance, and chemoresistance. Moreover, PCAT6 has been shown to exert biological functions beyond ceRNAs. In this review, we summarize the biological characteristics of PCAT6 in a variety of human malignancies and describe the biological mechanisms by which PCAT6 can facilitate tumor progression. Finally, we discuss its diagnostic and prognostic values and clinical applications in various human malignancies.

12.
Cell Death Discov ; 7(1): 225, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462426

RESUMEN

Multiple proinflammatory conditions, including chemotherapy, radiotherapy, transplant rejection, and microbial infections, have been identified to induce involution of the thymus. However, the underlying cellular and molecular mechanisms of these inflammatory conditions inducing apoptosis of thymic epithelial cells (TECs), the main components of the thymus, remain largely unknown. In the circulation, mature dendritic cells (mDCs), the predominant initiator of innate and adaptive immune response, can migrate into the thymus. Herein, we demonstrated that mDCs were able to directly inhibit TECs proliferation and induce their apoptosis by activating the Jagged1/Notch3 signaling pathway. Intrathymic injection of either mDCs or recombinant mouse Jagged1-human Fc fusion protein (rmJagged1-hFc) into mice resulted in acute atrophy of the thymus. Furthermore, DAPT, a γ-secretase inhibitor, reversed the effects induced by mDC or rmJagged1-hFc. These findings suggest that acute or aging-related thymus degeneration can be induced either by mass migration of circulating mDCs in a short period of time or by a few but constantly homing mDCs.

13.
Oncogene ; 40(27): 4521-4537, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34120141

RESUMEN

Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.


Asunto(s)
Microambiente Tumoral , Animales , Neoplasias de la Mama , Femenino , Ratones
14.
Front Immunol ; 12: 663660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054831

RESUMEN

Decidual natural killer (dNK) cells are the tissue-resident and major subpopulation of NK cells at the maternal-fetal interface. It has been demonstrated that dNK cells play pivotal roles in pregnancy, including keeping maternal-fetal immune tolerance, promoting extravillous trophoblast (EVT) cell invasion, and driving uterine spiral artery remodeling. However, the molecular mechanisms haven't been elucidated until recent years. In this review, we systemically introduce the generation, subsets, and surface or soluble molecules of dNK cells, which are critical for maintaining the functions of dNK cells. Further, new functions of dNK cells including well-controlled cytotoxicity, immunosurveillance and immunotrophism supporting via the cell-cell interaction between dNK cells and EVT cells are mainly focused. The molecular mechanisms involved in these functions are also illustrated. Moreover, pregnancy-associated diseases caused by the dNK cells abnormalities are discussed. It will be important for future investigations about the mechanism of maintenance of pregnancy and parturition and potential clinical applications of dNK cells.


Asunto(s)
Decidua/inmunología , Decidua/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Placenta/inmunología , Placenta/metabolismo , Biomarcadores , Comunicación Celular , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Femenino , Humanos , Tolerancia Inmunológica , Inmunofenotipificación , Intercambio Materno-Fetal , Embarazo , Primer Trimestre del Embarazo , Trofoblastos/metabolismo
15.
Sci Transl Med ; 13(587)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790024

RESUMEN

The functional state of T cells is a key determinant for effective antitumor immunity and immunotherapy. Cellular metabolism, including lipid metabolism, controls T cell differentiation, survival, and effector functions. Here, we report that development of T cell senescence driven by both malignant tumor cells and regulatory T cells is a general feature in cancers. Senescent T cells have active glucose metabolism but exhibit unbalanced lipid metabolism. This unbalanced lipid metabolism results in changes of expression of lipid metabolic enzymes, which, in turn, alters lipid species and accumulation of lipid droplets in T cells. Tumor cells and Treg cells drove elevated expression of group IVA phospholipase A2, which, in turn, was responsible for the altered lipid metabolism and senescence induction observed in T cells. Mitogen-activated protein kinase signaling and signal transducer and activator of transcription signaling coordinately control lipid metabolism and group IVA phospholipase A2 activity in responder T cells during T cell senescence. Inhibition of group IVA phospholipase A2 reprogrammed effector T cell lipid metabolism, prevented T cell senescence in vitro, and enhanced antitumor immunity and immunotherapy efficacy in mouse models of melanoma and breast cancer in vivo. Together, these findings identify mechanistic links between T cell senescence and regulation of lipid metabolism in the tumor microenvironment and provide a new target for tumor immunotherapy.


Asunto(s)
Inmunoterapia , Metabolismo de los Lípidos , Animales , Senescencia Celular , Humanos , Ratones , Linfocitos T Reguladores , Microambiente Tumoral
16.
Front Immunol ; 12: 641937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868274

RESUMEN

Ovarian cancer (OC) is still the leading cause of death among all gynecological malignancies, despite the recent progress in cancer therapy. Immune escape and drug resistance, especially platinum-based chemotherapy, are significant factors causing disease progression, recurrence and poor prognosis in OC patients. MicroRNAs(miRNAs) are small noncoding RNAs, regulating gene expression at the transcriptional level. Accumulating evidence have indicated their crucial roles in platinum resistance. Importantly, they also act as mediators of tumor immune escape/evasion. In this review, we summarize the recent study of miRNAs involved in platinum resistance of OC and systematically analyses miRNAs involved in the regulation of OC immune escape. Further understanding of miRNAs roles and their possible mechanisms in platinum resistance and tumor escape may open new avenues for improving OC therapy.


Asunto(s)
Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/patología , Resistencia a Antineoplásicos/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Escape del Tumor/fisiología , Animales , Femenino , Humanos , MicroARNs , Compuestos de Platino
17.
J Immunother Cancer ; 9(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33653799

RESUMEN

BACKGROUND: Current immunotherapies including checkpoint blockade therapy have limited success rates in certain types of cancers. Identification of alternative checkpoint molecules for the development of effective strategies for tumor immunotherapy is urgently needed. Immunoglobulin-like transcript 4 (ILT4) is an immunosuppressive molecule expressed in both myeloid innate cells and malignant tumor cells. However, the role of tumor-derived ILT4 in regulating cancer biology and tumor immunity remains unclear. METHODS: ILT4 expression in tumor cells and patient samples was determined by real-time PCR, flow cytometry, and immunohistochemistry. T cell senescence induced by tumor was evaluated using multiple markers and assays. Moreover, metabolic enzyme and signaling molecule expression and lipid droplets in tumor cells were determined using real-time PCR, western blot and oil red O staining, respectively. Loss-of-function and gain-of-function strategies were used to identify the causative role of ILT4 in tumor-induced T cell senescence. In addition, breast cancer and melanoma mouse tumor models were performed to demonstrate the role of ILT4 as a checkpoint molecule for tumor immunotherapy. RESULTS: We reported that ILT4 is highly expressed in human tumor cells and tissues, which is negatively associated with clinical outcomes. Furthermore, tumor-derived ILT4/PIR-B (ILT4 ortholog in mouse) is directly involved in induction of cell senescence in naïve/effector T cells mediated by tumor cells in vitro and in vivo. Mechanistically, ILT4/PIR-B increases fatty acid synthesis and lipid accumulation in tumor cells via activation of MAPK ERK1/2 signaling, resulting in promotion of tumor growth and progression, and induction of effector T cell senescence. In addition, blocking tumor-derived PIR-B can reprogram tumor metabolism, prevent senescence development in tumor-specific T cells, and enhance antitumor immunity in both breast cancer and melanoma mouse models. CONCLUSIONS: These studies identify a novel mechanism responsible for ILT4-mediated immune suppression in the tumor microenvironment, and prove a novel concept of ILT4 as a critical checkpoint molecule for tumor immunotherapy.


Asunto(s)
Inmunosenescencia , Linfocitos Infiltrantes de Tumor/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Receptores Inmunológicos/metabolismo , Linfocitos T/metabolismo , Escape del Tumor , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Comunicación Paracrina , Receptores Inmunológicos/genética , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/trasplante , Microambiente Tumoral
18.
Int J Gen Med ; 14: 10447-10464, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002301

RESUMEN

PURPOSE: Cytochrome b561 (CYB561) is a transmembrane protein and participates in ascorbate recycling and iron homeostasis. However, its role in breast cancer remains unclear. PATIENTS AND METHODS: In this study, we explored the expression pattern and prognostic value of CYB561 in breast cancer through The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), PrognoScan and Kaplan-Meier Plotter and confirmed its mRNA expression in human breast cell lines. LinkedOmics, Metascape and Gene Expression Profiling Interactive Analysis (GEPIA2) databases were applied to investigate the co-expression genes and construct microRNA (miRNA) networks associated with CYB561. The correlations between CYB561 and immune infiltration cells and genes were also illustrated. RESULTS: The CYB561 expression was upregulated in breast cancer tissues and cell lines and significantly correlated with the clinical features of breast cancer patients. High CYB561 expression was associated with poor survival and was an independent risk factor for overall and disease-specific survival. Functional enrichment analysis showed that CYB561 and its co-expressed genes were mainly enriched in lipid biosynthetic process, Wnt signaling pathway, Hippo signaling pathway, etc. The miRNA network analysis suggested that hsa-miR-497 was negatively correlated with CYB561 expression and was predicted to direct target CYB561. CYB561 expression was positively correlated with infiltrating levels of CD4+ T cells, neutrophils and dendritic cells in breast cancer. Subsequent analysis found that B cells could predict the outcome of breast cancer. Also, CYB561 showed strong correlations with diverse immune marker sets in breast cancer. CONCLUSION: CYB561 may serve as a potential prognostic biomarker and target for breast cancer. Our findings laid foundation for future research on molecular mechanisms of CYB561 in breast cancer.

19.
Sci Rep ; 10(1): 14538, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883983

RESUMEN

Regulatory factor X-5 (RFX5) represents a key transcription regulator of MHCII gene expression in the immune system. This study aims to explore the molecular mechanisms and biological significance of RFX5. Firstly, by analyzing ENCODE chromatin immunoprecipitation (ChIP)-seq in HepG2 and TCGA RNA-seq data, we discovered lysine-specific demethylase 4A (KDM4A), also named JMJD2A, to be a major downstream target gene of RFX5. Moreover, RFX5 was verified to bind directly to the KDM4A's promoter region and sequentially promoted its transcription determined by the ChIP-PCR assay and luciferase assay. In addition, RFX5-dependent regulation of KDM4A was demonstrated in HCC. Compared with adjacent non-tumor tissues, the expression levels of KDM4A were significantly raised in HCC tumor tissues. Notably, elevated levels of KDM4A were strongly correlated with HCC patient prognosis. Functionally, KDM4A overexpression largely rescued the growth inhibitory effects of RFX5 deletion, highlighting KDM4A as a downstream effector of RFX5. Mechanistically, the RFX5-KDM4A pathway promoted the progression of the cell cycle from G0/G1 to S phase and was protective against cell apoptosis through regulation of p53 and its downstream genes in HCC. In conclusion, RFX5 could promote HCC progression via transcriptionally activating KDM4A expression.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factores de Transcripción del Factor Regulador X/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Células Hep G2 , Humanos , Inmunohistoquímica , Histona Demetilasas con Dominio de Jumonji/genética , Neoplasias Hepáticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción del Factor Regulador X/genética , Análisis de Secuencia de ARN , Análisis de Matrices Tisulares , Activación Transcripcional/genética , Activación Transcripcional/fisiología
20.
Cancer Biomark ; 29(3): 387-397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741803

RESUMEN

BACKGROUND: The runt-related transcription factor family (RUNXs) including RUNX1, RUNX2, and RUNX3 are key transcriptional regulators in normal hematopoiesis. RUNXs dysregulations caused by aberrant expression or mutation are frequently seen in various human cancers especially in acute myeloid leukemia (AML). OBJECTIVE: We systemically analyzed the expression of RUNXs and their relationship with clinic-pathological features and prognosis in AML patients. METHODS: Expression of RUNXs was analyzed between AML patients and normal controls from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Correlations between RUNXs expression and clinical features together with survival were further analyzed. RESULTS: All RUNXs expression in AML patients was significantly increased as compared with controls. RUNXs expression was found to be significantly associated with genetic abnormalities such as RUNX1 mutation, t(8;21) and inv(16)/t(16;16). By Kaplan-Meier analysis, only RUNX3 overexpression was associated with shorter overall survival (OS) and disease-free survival (DFS) among non-M3 AML patients. Notably, in high RUNX3 expression groups, patients received hematopoietic stem cell transplantation (HSCT) had markedly better OS and DFS than patients without HSCT among both all AML and non-M3 AML. In low RUNX3 expression groups, there were no significant differences in OS and DFS between HSCT and non-HSCT groups among both all AML and non-M3 AML. In addition, a total of 835 differentially expressed genes and 69 differentially expressed microRNAs were identified to be correlated with RUNX3 expression in AML. CONCLUSION: RUNXs overexpression was a frequent event in AML, and was closely associated with diverse genetic alterations. Moreover, RUNX3 expression may be associated with clinical outcome, and helpful for guiding treatment choice between HSCT and chemotherapy in AML.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Regulación Leucémica de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/genética , Recurrencia Local de Neoplasia/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Médula Ósea/patología , Estudios de Casos y Controles , Cromosomas Humanos Par 16/genética , Cromosomas Humanos Par 8/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Metilación de ADN , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Mutación , Recurrencia Local de Neoplasia/genética , Pronóstico , Translocación Genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...